Архангельск (8182)63-90-72 Астана (7172)727-132 Астана (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Красиодар (861)203-40-90 Красиодар (861)203-40-90 Красиоярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Киргизия (996)312-96-26-47 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новосибирск (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Казахстан (772)734-952-31 Пермь (342)205-81-47 Россия (495)268-04-70 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

https://hlg.nt-rt.ru/ || hca@nt-rt.ru

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Спектрофотометры DR6000

Назначение средства измерений

Спектрофотометры DR6000 (далее – спектрофотометры) предназначены для измерения спектрального коэффициента направленного пропускания и оптической плотности жидких проб различного происхождения.

Описание средства измерений

Спектрофотометры представляют собой стационарные настольные лабораторные приборы, состоящие из оптико-механического и электронного узлов, установленных в общем корпусе.

Принцип действия спектрофотометров основан на измерении отношения интенсивностей излучения, прошедшего через исследуемый объект и пустую кювету.

Оптическая схема приборов — однолучевая с опорным каналом. Для разложения излучения в спектр используется монохроматор с дифракционной решеткой; в качестве источников излучения используются лампа накаливания (для видимой области) и дейтериевая лампа (для ультрафиолетовой области). В качестве приемников используются кремниевый фотодиод. Спектрофотометры управляются с помощью сенсорного экрана, на который выводятся рабочая длина волны, результат измерения коэффициента пропускания (или оптической плотности), снимаемые спектры, кинетические кривые и ряд служебных параметров. Спектрофотометры модели DR6000 имеют кюветное отделение, рассчитанное на установку кювет с длиной оптического пути до 100 мм

Фотография внешнего вида спектрофотометра представлена на рисунке 1.



Рисунок 1

Программное обеспечение

Спектрофотометры оснащены программным обеспечением, позволяющим осуществлять контроль процесса измерений, сохранять результаты измерений, проводить их статистическую обработку и архивирование.

Программное обеспечение спектрофотометра заложено в микропроцессоре и защищено от доступа и изменения. Обновление программного обеспечения в процессе эксплуатации не предусмотрено.

Идентификационные данные программного обеспечения

Наименование программного обеспечения	Идентификаци- онное наимено- вание программ- ного обеспечения	Номер версии (идентификаци- онный номер) программного обеспечения	Цифровой идентификатор программного обеспечения	Алгоритм вычисления цифрового идентификатора программного обеспечения
1.01	DR6000	1.01 (x/y/z/a/b/c/1)	-	-

Последовательность обозначений идентификационного номера ПО:

- -первые три цифры (1.01)- наименование программного обеспечения
- -цифры в скобках, за исключением последней цифры -(x) версия ядра операционной системы, (y) версия драйвера,(z) версия языковых файлов, (a) версия звуков, (b) версия файлов использующихся для обучения и помощи при работе с прибором, (c) версия драйвера принтера.
- последняя цифра (1) версия метрологической части программного обеспечения, ответственная за вычисления.

Пользователь работает только с интерфейсной частью программы, которая не предусматривает доступ к файловой системе метрологически значимой части ПО, и только позволяет выполнять измерения поглощения/пропускания света, сканирование спектров и ввода данных об образце и пользователе.

Метрологически значимая часть ПО имеет полную защиту от преднамеренных или непреднамеренных изменений, реализованную изготовителем на этапе производства путем установки системы защиты микропроцессора от чтения и записи. При включении контролируется целостность внутренней файловой системы.

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений соответствует уровню «С» по МИ 3286-2010.

Метрологические и технические характеристики

Merposiori reckie ii realii reckie aapakrepiterikii	T
Наименование характеристик	Значения характеристик
Диапазон измерений спектральных коэффициентов направленного	от 0,5 до 100
пропускания, %	, , ,
Пределы допускаемой абсолютной погрешности измерений коэф-	
фициентов направленного пропускания, %:	
- в диапазоне от 0,5 до 5,0 %	±0,5
- в диапазоне св. 5,0 до 30,0 %	±1,0
- в диапазоне св. 30,0 до 100 %	±1,5
Рабочий спектральный диапазон, нм	от 190 до 1100
Диапазон измерений оптической плотности, Б	0,03 - 2,0
Пределы допускаемой абсолютной погрешности при измерении оп-	
тической плотности, мБ	± 5
- в диапазоне от 0,0 до 0,5 Б вкл.	
Пределы допускаемой относительной погрешности при измерении	
оптической плотности, %	±1
- в диапазоне св. 0,5 до 2,0 Б	
Пределы допускаемой абсолютной погрешности установки длин	± 2
волн, нм	± Δ
Уровень рассеянного света (раствор КІ при 220 нм), %, не более	0,05
Спектральная ширина щели, нм, не более	2
Электропитание:	
- напряжение питания частотой (50 ± 1) Гц, В	220 (+1015%)
- потребляемая мощность, В А, не более	150
Масса, кг, не более	11
Габаритные размеры (Д×Ш×В), мм, не более	500×460×215

Наименование характеристик	Значения характеристик
Условия эксплуатации:	
- температура окружающего воздуха, оС	от 10 до 40
- относительная влажность воздуха, %	от 20 до 80
Средний срок службы, лет	8

Знак утверждения типа

наносится на левую панель корпуса спектрофотометра методом наклейки и на титульный лист Руководства по эксплуатации типографским способом.

Комплектность средства измерений

Наименование	Количество, шт.
Спектрофотометр	1
Универсальный адаптер	1
Чехол	1
Руководство по эксплуатации (книга и электронная версия на компактдиске)	1
Методика поверки МП 59-241-2012	1
Комплектующие по дополнительному заказу	
Галогеновая лампа А23778	
Дейтеривая лампа А23792	
Универсальный кюветный адаптер LZV902.99.00020	
Шнур питания ҮАА080	
Предохранитель А23772	
Фильтрующая панель LZV915	
Пылезащитный чехол LZV886	
Защита USB интерфейса LZV881	
Модуль автоматической подачи пробы	
Система SIP 10 подачи образца в проточную кювету LQV157.99.20002	
Набор LOC 100 для работы с RFID метками. LQV156.99.20002	
Карусельный держатель 7×1см LZV902.99.00002	
Карусельный держатель 5×1 дюйм LZV902.99.00012	

Поверка

осуществляется по документу МП 59-241-2012 «ГСИ. Спектрофотометры DR6000. Методика поверки», утвержденному ФГУП «УНИИМ» в 2012 г.

Эталонные средства измерений, используемые при поверке:

- комплект светофильтров КНС-10.2 (диапазон длин волн 260 - 950 нм; диапазон измерений спектрального коэффициента направленного пропускания (0,02 - 0,92) отн. ед; погрешность $\pm (0,0015 - 0,0025)$ отн. ед.);

Сведения о методиках (методах) измерений

ГОСТ Р 51680-2000 Методы определения содержания цианидов.

ГОСТ 4974-72 Методы определения концентрации марганца.

ГОСТ 4388-72 Методы определения концентрации меди.

ГОСТ 18165-89 Метод определения массовой концентрации алюминия.

ГОСТ 18393-72 Методы определения содержания свинца, цинка, серебра.

Сан.Пин 2.1.4.559-96 Гигиенические нормативы содержания вредных веществ в питьевой воде.

Методика измерений представлена в руководстве по эксплуатации.

Нормативные и технические документы, устанавливающие требования к спектрофотометрам DR6000

ГОСТ 8.557-2007 ГСИ. Государственная поверочная схема для средств измерений спектральных, интегральных и редуцированных коэффициентов направленного пропускания и оптической плотности в диапазоне длин волн $0.2\div50.0$ мкм, диффузного и зеркального отражений в диапазоне длин волн $0.2\div20.0$ мкм.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

при выполнении работ в области охраны окружающей среды,

Архангельск (8182)63-90-72 Астана (7172)727-132 Астарахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Нжевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Краснодар (861)203-40-90 Красномуск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Киргизия (996)312-96-26-47

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Казахстан (772)734-952-31 Пермь (342)205-81-47 Россия (495)268-04-70 Ростов-на-Допу (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

https://hlg.nt-rt.ru/ || hca@nt-rt.ru